Online customer reviews contain rich sentimental expressions of customer preferences on products, which is valuable information for analyzing customer preferences in product design. The adaptive neuro fuzzy inference system (ANFIS) was applied to the establishment of customer preference models based on online reviews, which can address the fuzziness of customers’ emotional responses in comments and the nonlinearity of modeling. However, due to the black box problem in ANFIS, the nonlinearity of the modeling cannot be shown explicitly. To solve the above problems, a chaos-driven ANFIS approach is proposed to develop customer preference models using online comments. The model’s nonlinear relationships are represented transparently through the fuzzy rules obtained, which provide human-readable equations. In the proposed approach, online reviews are analyzed using sentiment analysis to extract the information that will be used as the data sets for modeling. After that, the chaos optimization algorithm (COA) is applied to determine the polynomial structure of the fuzzy rules in ANFIS to model the customer preferences. Using laptop products as a case study, several approaches are evaluated for validation, including fuzzy regression, fuzzy least-squares regression, ANFIS, ANFIS with subtractive cluster, and ANFIS with K-means. Compared to the other five approaches, the values of mean relative error, variance of error, and confidence interval of validation error are improved based on the proposed approach.
Loading....